If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=4.9t^2+10t-120
We move all terms to the left:
0-(4.9t^2+10t-120)=0
We add all the numbers together, and all the variables
-(4.9t^2+10t-120)=0
We get rid of parentheses
-4.9t^2-10t+120=0
a = -4.9; b = -10; c = +120;
Δ = b2-4ac
Δ = -102-4·(-4.9)·120
Δ = 2452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2452}=\sqrt{4*613}=\sqrt{4}*\sqrt{613}=2\sqrt{613}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{613}}{2*-4.9}=\frac{10-2\sqrt{613}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{613}}{2*-4.9}=\frac{10+2\sqrt{613}}{-9.8} $
| 2^x+3^x=198 | | 7(2x+4)=14x-10 | | 3(5x+4)–20=13x-4 | | 3x+90=189 | | 12-3y=5y+22 | | m-44=-3 | | 8-2a=10 | | 1/4x+1=8x+13 | | 120=24x-48 | | 4x²-5=20 | | (t+1)²+(t-8)²=65 | | 12w=17 | | 1.2m+m=110 | | X^2+y^2+6y=-50-14 | | f(4)=-3+4 | | 3(7n+4)=-34-2n | | F(x)=-4/90(x-30)^2+50 | | f(0)=-3+4 | | 3.5x=10-30 | | 0=-2.2x+0.6 | | -2.2x+0.6=0 | | 7^2x-11=12^x | | -x+1=8x+1 | | -x-(-12)=3 | | 8f-14=2 | | 3-3x=3-3x | | x-6=x-11 | | -2x-6=-10-2x | | -2x=3x-3-5x | | 1/8x+1/6x-x=5/6-1)2x | | f(15)=7.5(15 | | h²+3h=30 |